Eta Carinae
Eta Carinae (η Carinae or η Car) is a superbright hypergiant star in the constellation Carina, about 7,500 to 8,000 light-years from the Sun.
The system contains at least two stars, of which the primary is a luminous blue variable (LBV) that initially had around 150 solar masses, of which it has lost at least 30. A hot supergiant of about 30 solar masses is in orbit around the primary. An enormous thick red nebula surrounding Eta Carinae makes it impossible to see this companion optically, but the dumbell-shaped gas cloud is formed by two stars.[1]
The Eta Carinae system is inside the Homunculus nebula, itself part of the much larger Carina nebula. Together they have a combined luminosity of over five million times the Sun's.[2] It is not visible north of latitude 30°N and is seen moving round the pole south of latitude 30°S. Due to its mass and the stage of its life, it is expected to explode as a supernova in the future.
History
Eta Carinae was first recorded as a 4th magnitude star. It brightened from 1837 to 1856 in an event known as "the Great Eruption". Eta Carinae became the second brightest star in the sky between 11 and 14 March 1843 before fading well below naked eye visibility.
It has brightened since about 1940, peaking above magnitude 4.5 in 2014. Eta Carinae is circumpolar south of latitude 30°S, so it is never seen north of latitude 30°N.[3]
System and properties
This stellar system is currently one of the most massive that can be studied in detail. Until recently, Eta Carinae was thought to be the most massive single star, but in 2005 it was proved to be a binary system.[4] The most massive star in the Eta Carinae multiple star system probably has more than 100 times the mass of the Sun.[5] There are other massive stars which are known to be more luminous and are more massive.
Stars like Eta Carinae produce over a million times as much light as the Sun. They are quite rare — only a few dozen are present in a galaxy the size of the Milky Way. They are assumed to be near or over the Eddington limit. That means the outward pressure of their radiation is almost strong enough to counteract gravity. Stars over 120 solar masses exceed the Eddington limit, and their gravity is barely strong enough to hold in their radiation and gas.
Eta Carinae's chief significance for astrophysics is its giant eruption, which was observed around 1843. In a few years, Eta Carinae produced almost as much visible light as a supernova explosion, but it survived. It was a 'supernova impostor' or 'failed supernova'. Eta Carinae's giant eruption was the prototype for this phenomenon.
One remarkable aspect of Eta Carinae is its changing brightness. It is currently classified as a luminous blue variable (LBV) binary star due to peculiarities in its pattern of brightening and dimming.
The ionizing radiation emitted by the secondary star in Eta Carinae is the major radiation source of the system. Much of this radiation is absorbed by the primary stellar wind.
Eta Carinae Media
(NASA News Release) A huge, billowing pair of gas and dust clouds are captured in this stunning NASA Hubble Space Telescope image of the supermassive star Eta Carinae.*Using a combination of image processing techniques (dithering, subsampling and deconvolution), astronomers created one of the highest resolution images of an extended object ever produced by Hubble Space Telescope. The resulting picture reveals astonishing detail.*Even though Eta Carinae is more than 8,000 light-years away, structures only 10 billion miles across (0.0017 LY, or about the diameter of our solar sy
Eta Carinae and Carina Nebula in the constellation of Carina
Position of Eta Carinae (top left) compared to PP Carinae (bottom right)
Hubble Space Telescope composite of Eta Carinae showing the unusual emission spectrum (near-IR image spectrum from the Hubble Space Telescope Imaging Spectrograph CCD)
Animation showing the expanding light echo caused by the Eta Carinae eruption in the Carina Nebula
Ultraviolet image of Homunculus Nebula taken by ESA/Hubble
Related pages
References
- ↑ Rincon, Paul 2019. The best space images of 2019. BBC News Science & Environment. [1]
- ↑ Kash A. & Soker N. 2009. Possible implications of mass accretion in Eta Carinae. New Astronomy 14: 11. [2]
- ↑ Frew, David J. 2004. The historical record of η Carinae I. The visual light curve, 1595–2000. Journal of Astronomical Data 10 (6): 1–76. [3]
- ↑ Smith, Nathan & Owocki, Stanley P. 2006. On the role of continuum-driven eruptions in the evolution of very massive stars. Astrophysical Journal 645 (1): L45. [4]
- ↑ Frommert, Hartmut & Kronberg, Christine 1998. Peculiar star Eta Carinae, in Carina. Students for the Exploration and Development of Space (SEDS) [5].