Affine arithmetic

Affine arithmetic (AA) is a computer arithmetic which was made to improve the performance of interval arithmetic.

Background

Today, the interval arithmetic technology which was made by Sunaga[1] and R. Moore[2][3][4] is used in many areas including validated numerics.[5] But unfortunately, interval arithmetic is useless when numerical computation is repeated many times.[4] Therefore, many experts have studied how to overcome this weakness. Affine arithmetic is one result of this movement.

Applications

  • L. H. de Figueiredo and J. Stolfi (1996), "Adaptive enumeration of implicit surfaces with affine arithmetic". Computer Graphics Forum, 15 5, 287–296.
  • W. Heidrich (1997), "A compilation of affine arithmetic versions of common math library functions". Technical Report 1997-3, Universität Erlangen-Nürnberg.
  • L. Egiziano, N. Femia, and G. Spagnuolo (1998), "New approaches to the true worst-case evaluation in circuit tolerance and sensitivity analysis — Part II: Calculation of the outer solution using affine arithmetic". Proc. COMPEL'98 — 6th Workshop on Computer in Power Electronics (Villa Erba, Italy), 19–22.
  • W. Heidrich, Ph. Slusallek, and H.-P. Seidel (1998), "Sampling procedural shaders using affine arithmetic". ACM Transactions on Graphics, 17 3, 158–176.
  • A. de Cusatis Jr., L. H. Figueiredo, and M. Gattass (1999), "Interval methods for ray casting surfaces with affine arithmetic". Proc. SIBGRAPI'99 — 12th Brazilian Symposium on Computer Graphics and Image Processing, 65–71.
  • I. Voiculescu, J. Berchtold, A. Bowyer, R. R. Martin, and Q. Zhang (2000), "Interval and affine arithmetic for surface location of power- and Bernstein-form polynomials". Proc. Mathematics of Surfaces IX, 410–423. Springer, ISBN 1-85233-358-8.
  • Q. Zhang and R. R. Martin (2000), "Polynomial evaluation using affine arithmetic for curve drawing". Proc. of Eurographics UK 2000 Conference, 49–56. ISBN 0-9521097-9-4.
  • N. Femia and G. Spagnuolo (2000), "True worst-case circuit tolerance analysis using genetic algorithm and affine arithmetic — Part I". IEEE Transactions on Circuits and Systems, 47 9, 1285–1296.
  • R. Martin, H. Shou, I. Voiculescu, and G. Wang (2001), "A comparison of Bernstein hull and affine arithmetic methods for algebraic curve drawing". Proc. Uncertainty in Geometric Computations, 143–154. Kluwer Academic Publishers, ISBN 0-7923-7309-X.
  • A. Bowyer, R. Martin, H. Shou, and I. Voiculescu (2001), "Affine intervals in a CSG geometric modeller". Proc. Uncertainty in Geometric Computations, 1–14. Kluwer Academic Publishers, ISBN 0-7923-7309-X.
  • L. H. de Figueiredo, J. Stolfi, and L. Velho (2003), "Approximating parametric curves with strip trees using affine arithmetic". Computer Graphics Forum, 22 2, 171–179.
  • C. F. Fang, T. Chen, and R. Rutenbar (2003), "Floating-point error analysis based on affine arithmetic". Proc. 2003 International Conf. on Acoustic, Speech and Signal Processing.
  • A. Paiva, L. H. de Figueiredo, and J. Stolfi (2006), "Robust visualization of strange attractors using affine arithmetic". Computers & Graphics, 30 6, 1020– 1026.

Improvements

Some experts are trying to improve affine arithmetic. Their results are known as the extended affine arithmetic[6][7][8] or modified affine arithmetic.[9][10]

Libraries

This a list of libraries that supports affine arithmetic:

References

  1. T. Sunaga, Theory of interval algebra and its application to numerical analysis. (1958). RAAG memoirs, 29–46.
  2. Stace, Clive A. (1991-10-03). Plant Taxonomy and Biosystematics. Cambridge University Press. ISBN 978-0-521-42785-2.
  3. Moore, R. E. (1979). Methods and applications of interval analysis. Society for Industrial and Applied Mathematics.
  4. 4.0 4.1 Moore, Ramon E. (2009). Introduction to interval analysis. R. Baker Kearfott, Michael J. Cloud. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 978-0-89871-669-6. OCLC 258333490.
  5. Jaulin, L. Kieffer, M., Didrit, O. Walter, E. (2001). Applied Interval Analysis. Berlin: Springer.
  6. Liao, X., Liu, K., Le, J., Zhu, S., Huai, Q., Li, B., & Zhang, Y. (2020). Extended affine arithmetic-based global sensitivity analysis for power flow with uncertainties. International Journal of Electrical Power & Energy Systems, 115, 105440.
  7. Messine, F., & Touhami, A. (2006). A general reliable quadratic form: An extension of affine arithmetic. Reliable Computing, 12(3), 171-192.
  8. Goubault, E., & Putot, S. (2008). Perturbed affine arithmetic for invariant computation in numerical program analysis. arXiv preprint arXiv:0807.2961.
  9. Shou, H., Lin, H., Martin, R., & Wang, G. (2003). Modified affine arithmetic is more accurate than centered interval arithmetic or affine arithmetic. In Mathematics of Surfaces (pp. 355-365). Springer, Berlin, Heidelberg.
  10. Shou, H., Lin, H., Martin, R. R., & Wang, G. (2006). Modified affine arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface plotting. Journal of Computational and Applied Mathematics, 195(1-2), 155-171.
  11. Overview of kv – a C++ library for verified numerical computation, Masahide Kashiwagi, SCAN 2018.

Further Reading

Surveys

  • L. H. de Figueiredo and J. Stolfi (2004) "Affine arithmetic: concepts and applications." Numerical Algorithms 37 (1–4), 147–158.
  • J. L. D. Comba and J. Stolfi (1993), "Affine arithmetic and its applications to computer graphics". Proc. SIBGRAPI'93 — VI Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens (Recife, BR), 9–18.
  • Nedialkov, N. S., Kreinovich, V., & Starks, S. A. (2004). Interval arithmetic, affine arithmetic, Taylor series methods: why, what next?. Numerical Algorithms, 37(1-4), 325-336.