Euler's identity
Euler's identity, sometimes called Euler's equation, is this equation:[1][2]
[math]\displaystyle{ e^{i\pi} + 1 = 0 }[/math]
It features the following mathematical constants:
- [math]\displaystyle{ \pi }[/math], pi
- [math]\displaystyle{ \pi \approx 3.14159 }[/math]
- [math]\displaystyle{ e }[/math], Euler's Number
- [math]\displaystyle{ e \approx 2.71828 }[/math]
- [math]\displaystyle{ i }[/math], imaginary unit
- [math]\displaystyle{ i = \sqrt{-1} }[/math]
It also features three of the basic mathematical operations: addition, multiplication and exponentiation.[1][3]
Euler's identity is named after the Swiss mathematician Leonard Euler. It is not clear that he invented it himself.[4]
Respondents to a Physics World poll called the identity "the most profound mathematical statement ever written", "uncanny and sublime", "filled with cosmic beauty" and "mind-blowing".[5]
Mathematical proof of Euler's Identity using Taylor Series
Many equations can be written as a series of terms added together. This is called a Taylor series.
The exponential function [math]\displaystyle{ e ^{x} }[/math] can be written as the Taylor series
[math]\displaystyle{ e ^{x} = 1 + x + {x^{2}\over{2!}} + {x^{3}\over{3!}} + {x^{4}\over{4!}} \cdots = \sum_{k=0}^\infty {x^{n}\over n!} }[/math]
As well, the sine function can be written as
[math]\displaystyle{ \sin{x} = x - {x^{3} \over 3!} + {x^5 \over 5!} - {x^{7} \over 7!} \cdots = \sum_{k=0}^\infty {(-1)^{n}\over (2n+1)!} {x^{2n+1}} }[/math]
and cosine as
[math]\displaystyle{ \cos{x} = 1 - {x^{2} \over 2!} + {x^4 \over 4!} - {x^{6} \over 6!} \cdots = \sum_{k=0}^\infty {(-1)^{n}\over (2n)!} {x^{2n}} }[/math]
Here, we see a pattern take form. [math]\displaystyle{ e^{x} }[/math] seems to be a sum of sine and cosine's Taylor series, except with all of the signs changed to positive. The identity we are actually proving is [math]\displaystyle{ e^{ix} = \cos(x) + i \sin(x) }[/math].
So, on the left side is [math]\displaystyle{ e^{ix} }[/math], whose Taylor series is [math]\displaystyle{ 1 + ix - {x^{2} \over 2!} - {ix^{3} \over 3!} + {x^{4} \over 4!} + {ix^{5} \over 5!} \cdots }[/math]
We can see a pattern here, that every second term is i times sine's terms, and that the other terms are cosine's terms.
On the right side is [math]\displaystyle{ \cos(x) + i \sin(x) }[/math], whose Taylor series is the Taylor series of cosine, plus i times the Taylor series of sine, which can be shown as:
[math]\displaystyle{ ( 1 - {x^{2} \over 2!} + {x^{4} \over 4!} \cdots) + (ix - {ix^{3} \over 3!} + {ix^{5} \over 5!}\cdots) }[/math]
if we add these together, we have
[math]\displaystyle{ 1 + ix - {x^{2} \over 2!} - {ix^{3} \over 3!} + {x^{4} \over 4!} + {ix^{5} \over 5!} \cdots }[/math]
Therefore,
[math]\displaystyle{ e^{ix} = \cos(x) + i \sin(x) }[/math]
Now, if we replace x with [math]\displaystyle{ \pi }[/math], we have:
[math]\displaystyle{ e^{i\pi} = \cos(\pi) + i \sin(\pi) }[/math]
Since we know that [math]\displaystyle{ \cos(\pi) = -1 }[/math] and [math]\displaystyle{ \sin(\pi) = 0 }[/math], we have:
- [math]\displaystyle{ e^{i\pi} = -1 }[/math]
- [math]\displaystyle{ e^{i\pi} + 1 = 0 }[/math]
which is the statement of Euler's identity.
Euler's Identity Media
Related pages
References
- ↑ 1.0 1.1 "Euler's Formula: A Complete Guide — Euler's Identity". Math Vault. 2020-09-30. Retrieved 2020-10-02.
- ↑ Weisstein, Eric W. "Euler Formula". mathworld.wolfram.com. Retrieved 2020-10-02.
- ↑ Hogenboom, Melissa. "The most beautiful equation is... Euler's identity". www.bbc.com. Retrieved 2020-10-02.
- ↑ Sandifer, C. Edward 2007. Euler's greatest hits. Mathematical Association of America, p. 4. ISBN 978-0-88385-563-8
- ↑ Crease, Robert P. (2004-10-06). "The greatest equations ever". IOP. Retrieved 2016-02-20.