% Illustration of approximating the Dirac delta function with gaussians.
function main()
r = 3; % the power in the Bernoulli inequality
% KSmrq's colors
red = [0.867 0.06 0.14];
blue = [0, 129, 205]/256;
green = [0, 200, 70]/256;
yellow = [254, 194, 0]/256;
white = 0.99*[1, 1, 1];
% Set up the grid and other parameters
N = 300;
A = -2; B = 2;
C=-1; D = 6;
X = linspace(A, B, N);
% Set up the figure
lw = 3; % linewidth
fs = 18; % font size
for p=1:10
a=1/p;
% gaussian
Y=(1/(a*sqrt(pi)))*exp(-X.^2/a^2);
figure(1); clf;
set(gca, 'fontsize', fs);
set(gca, 'linewidth', 0.4*lw)
hold on;
plot_axes (A, B, C, D, lw/1.5);
plot(X, Y, 'color', blue, 'linewidth', lw);
axis equal; axis([A, B, C, D]);
set(gca, 'XTick', [-2, -1, 0, 1, 2]) % text labels on the x axis
grid on;
H=text(B-1.5, D-0.5, sprintf('a=1/%d', p), 'fontsize', fs);
% save to disk
file = sprintf('Frame%d.eps', 1000+p);
disp(file);
saveas(gcf, file, 'psc2')
pause(0.1);
end
% Converted to gif with the command
% convert -antialias -density 100 -delay 20 -loop 10000 Frame10* Dirac_function_approximation.gif
% then scaled in Gimp
function plot_axes (A, B, C, D, lw)
gray = 0.5*[1, 1, 1];
plot([A B], [0, 0], 'linewidth', lw, 'color', gray);
plot([0, 0], [C, D], 'linewidth', lw, 'color', gray);