File:NZ opinion polls 2011-2014-majorparties.png

NZ_opinion_polls_2011-2014-majorparties.png(778 × 487 pixels, file size: 13 KB, MIME type: image/png)

Commons-logo.svg This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

Summary

Description
English: Graph showing support for political parties in New Zealand since the 2011 election, according to various political polls. Data is obtained from the Wikipedia page, Opinion polling for the Next New Zealand general election
Date
Source Own work
Author Mark Payne, Denmark
This file may be updated to reflect new information.
If you wish to use a specific version of the file without it being overwritten, please upload the required version as a separate file.
 
This chart was created with R.

Figure is produced using the R statistical package, using the following code. It first reads the HTML directly from the website, then parses the data and saves the graph into your working directory. It should be able to be run directly by anyone with R.

rm(list=ls())
library(mgcv)

#==========================================
#Parameters - specified as a list
opts <- list()
opts$major <- list(parties= c("Green","Labour","National","NZ First"),   #use precise names from Table headers
                   ylims = c(0,65),   #Vertical range
                   fname= "NZ_opinion_polls_2011-2014-majorparties.png",
                   dp=0)  #Number of decimal places to round estimates to
opts$minor <- list(parties=c("ACT","Maori","United Future","Mana","Conservative","Internet Mana"),   #please use "Maori" for the Maori party
                   ylims = c(0,6),   #Vertical range
                   fname = "NZ_opinion_polls_2011-2014-minorparties.png",
                   dp=1) #Number of decimal places to round estimates to

#==========================================
#Shouldn't need to edit anything below here
#==========================================

#Load the complete HTML file into memory
html <- readLines(url("http://en.wikipedia.org/wiki/Opinion_polling_for_the_next_New_Zealand_general_election",encoding="UTF-8"))
closeAllConnections()

#Extract the opinion poll data table
tbl.no <- 1
tbl <- html[(grep("<table.*",html)[tbl.no]):(grep("</table.*",html)[tbl.no])]

#Now split it into the rows, based on the <tr> tag
tbl.rows <- list()
open.tr <- grep("<tr",tbl)
close.tr <- grep("</tr",tbl)
for(i in 1:length(open.tr)) tbl.rows[[i]] <- tbl[open.tr[i]:close.tr[i]]

#Extract table headers
hdrs <- grep("<th",tbl,value=TRUE)
hdrs <- hdrs[1:(length(hdrs)/2)]
party.names <- gsub("<.*?>","",hdrs)[-c(1:2)]
party.names <- gsub(" ","_",party.names)  #Replace space with a _
party.names <- gsub("M.{1}ori","Maori",party.names)  #Apologies, but the hard "a" is too hard to handle otherwise
party.cols   <- gsub("^.*bgcolor=\"(.*?)\".*$","\\1",hdrs)[-c(1:2)]
names(party.cols) <- party.names

#Extract data rows
tbl.rows <- tbl.rows[sapply(tbl.rows,function(x) length(grep("<td",x)))>1]

#Now extract the data
survey.dat <- lapply(tbl.rows,function(x) {
  #Start by only considering where we have <td> tags
  td.tags <- x[grep("<td",x)]
  #Polling data appears in columns other than first two
  dat     <- td.tags[-c(1,2)]
  #Now strip the data and covert to numeric format
  dat     <- gsub("<td>|</td>","",dat)
  dat     <- gsub("%","",dat)
  dat     <- gsub("-","0",dat)
  dat     <- gsub("<","",dat)
  dat     <- as.numeric(dat)
  if(length(dat)!=length(party.names)) {
     stop(sprintf("Survey data is not defined properly: %s",td.tags[1]))
  }
  names(dat) <- party.names
  #Getting the date strings is a little harder. Start by tidying up the dates
  date.str <- td.tags[2]                        #Dates are in the second column
  date.str <- gsub("<sup.*</sup>","",date.str)   #Throw out anything between superscript tags, as its an reference to the source
  date.str <- gsub("<td>|</td>","",date.str)  #Throw out any tags
  #Get numeric parts of string
  digits.str <- gsub("[^0123456789]"," ",date.str)
  digits.str <- gsub("^ +","",digits.str)    #Drop leading whitespace
  digits     <- strsplit(digits.str," +")[[1]]
  yrs        <- grep("[0-9]{4}",digits,value=TRUE)
  days       <- digits[!digits%in%yrs]
  #Get months
  month.str <- gsub("[^A-Z,a-z]"," ",date.str)
  month.str <- gsub("^ +","",month.str)        #Drop leading whitespace
  mnths     <- strsplit(month.str," +",month.str)[[1]]
  #Now paste together to make standardised date strings
  days  <- rep(days,length.out=2)
  mnths <- rep(mnths,length.out=2)
  yrs <- rep(yrs,length.out=2)
  dates.std <- paste(days,mnths,yrs)
  #And finally the survey time
  survey.time <- mean(as.POSIXct(strptime(dates.std,format="%d %B %Y")))
  #Get the name of the survey company too
  survey.comp <- td.tags[1]
  survey.comp <- gsub("<sup.*</sup>","",survey.comp)
  survey.comp <- gsub("<td>|</td>","",survey.comp)
  survey.comp <- gsub("<U+2013>","-",survey.comp,fixed=TRUE)
  survey.comp <- gsub("(?U)<.*>","",survey.comp,perl=TRUE)
  survey.comp <- gsub("^ +| +$","",survey.comp)
  survey.comp <- gsub("-+"," ",survey.comp)

  #And now return results
  return(data.frame(Company=survey.comp,Date=survey.time,date.str,t(dat)))
})

#Combine results
surveys <- do.call(rbind,survey.dat)

#==========================================
#Now generate each plot
#==========================================
smoothers  <- list()
for(opt in opts) {

#Restrict data to selected parties
selected.parties <- gsub(" ","_",sort(opt$parties))
selected.cols <- party.cols[selected.parties]
plt.dat   <- surveys[,c("Company","Date",selected.parties)]
plt.dat <- subset(plt.dat,!is.na(surveys$Date))
plt.dat <- plt.dat[order(plt.dat$Date),]
plt.dat$date.num  <- as.double(plt.dat$Date)
plt.dat <- subset(plt.dat,Company!="2008 election result")
plt.dat$Company <- factor(plt.dat$Company)

#Setup plot
ticks <- ISOdate(c(rep(2011,1),rep(2012,2),rep(2013,2),rep(2014,2),2015),c(rep(c(7,1),4)),1)
xlims <- range(c(ISOdate(2011,11,1),ticks))
png(opt$fname,width=778,height=487,pointsize=16)
par(mar=c(5.5,4,1,1))
matplot(plt.dat$date.num,plt.dat[,selected.parties],pch=NA,xlim=xlims,ylab="Party support (%)",
    xlab="",col=selected.cols,xaxt="n",ylim=opt$ylims,yaxs="i")
abline(h=seq(0,95,by=5),col="lightgrey",lty=3)
abline(v=as.double(ticks),col="lightgrey",lty=3)
box()
axis(1,at=as.double(ticks),labels=format(ticks,format="1 %b\n%Y"),cex.axis=0.8)
axis(4,at=axTicks(4),labels=rep("",length(axTicks(4))))

#Now calculate the gam smoothers and add the confidence interval
smoothed.l <- list()
for(n in selected.parties) {
  smooth.dat <-  data.frame(value=plt.dat[,n],company=plt.dat$Company,date=plt.dat$date.num)
  #Smoother is a GAMM with polling company as a random effect
  #Initially, we use a fixed term smoother. Once we get some data, 
  #can switch to automatic smoothness selection
  smoother <- gamm(value ~ s(date,k=10) ,data=smooth.dat,random=list(company=~1))
  smoothers[[n]] <- smoother
  smoothed <- do.call(data.frame,predict(smoother$gam,se=TRUE))
  smoothed$date <- smoother$gam$model$date
  polygon(c(smoothed$date,rev(smoothed$date)),
    c(smoothed$fit+smoothed$se.fit*1.96,rev(smoothed$fit-smoothed$se.fit*1.96)),
    col=rgb(0.5,0.5,0.5,0.5),border=NA)
  smoothed.l[[n]] <- smoothed
}

#Then add the data points
matpoints(plt.dat$date.num,plt.dat[,selected.parties],pch=20,col=selected.cols)
#And finally the smoothers themselves
for(n in selected.parties) {
  lines(smoothed.l[[n]]$date,smoothed.l[[n]]$fit,col=selected.cols[n],lwd=2)
}

n.parties <- length(selected.parties)
legend(grconvertX(0.5,"npc"),grconvertY(0.0,"ndc"),xjust=0.5,yjust=0,
       legend=gsub("_"," ",selected.parties),
       col=selected.cols,pch=20,bg="white",lwd=2,
       ncol=ifelse(n.parties>4,ceiling(n.parties/2),n.parties),xpd=NA)
#Add best estimates
fmt.str <- sprintf("%%2.%if\261%%1.%if %%%%",opt$dp,opt$dp)
for(n in names(smoothed.l)) {
  lbl <- sprintf(fmt.str,
                 round(rev(smoothed.l[[n]]$fit)[1],opt$dp),
                 round(1.96*rev(smoothed.l[[n]]$se.fit)[1],opt$dp))
  text(rev(plt.dat$date.num)[1],rev(smoothed.l[[n]]$fit)[1],
       labels=lbl,pos=4,col=selected.cols[n],xpd=NA)
}
dev.off()
}

#==========================================
#Finished!
#==========================================

cat("Complete.\n")


Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Any autoconfirmed user can overwrite this file from the same source. Please ensure that overwrites comply with the guideline.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

27 August 2012

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current13:36, 18 September 2014778 × 487 (13 KB)Lcmortensenupdate to 19 September, change prediction to 1dp.

The following page uses this file: