|
|
|
∅c |
|
|
|
|
|
|
|
A = A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ac Bc |
true A ↔ A |
A B |
|
|
|
|
|
A Bc |
AA |
A Bc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A Bc |
¬A ¬B A → ¬B |
A B |
A B A ← ¬B |
Ac B |
|
|
|
A B |
A¬B |
A = Bc |
A¬B |
A B |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bc |
A ¬B A ← B |
A |
A B A ↔ ¬B |
Ac |
¬A B A → B |
B |
|
B = ∅ |
AB |
A = ∅c |
A¬B |
A = ∅ |
AB |
B = ∅c
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¬B |
A Bc |
A |
(A B)c |
¬A |
Ac B |
B |
|
Bfalse |
|
Atrue |
A = B |
Afalse |
|
Btrue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A ¬B |
Ac Bc |
A B |
A B |
¬A B |
|
|
|
|
|
AB |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¬A ¬B |
∅ |
A B |
|
|
|
|
|
|
A = Ac |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
false A ↔ ¬A |
|
|
|
|
|
|
|
A¬A |
|
|
|
These sets (statements) have complements (negations). They are in the opposite position within this matrix.
|
|
These relations are statements, and have negations. They are shown in a separate matrix in the box below.
|