File:Window function and frequency response - Rectangular.svg

Original file(SVG file, nominally 512 × 256 pixels, file size: 157 KB)

Commons-logo.svg This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

Summary

Description
English: Window function and its Fourier transform: Rectangular window
Date
Source Own work
Author Bob K (original version), Olli Niemitalo, BobQQ
Permission
(Reusing this file)
I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Other versions

The SVG images generated by the enclosed Octave source code replace the older PNG images.

See Window function (rectangular).png for example of writing .png files
SVG development
InfoField
 
The SVG code is valid (1 warning)
 
This vector image was created with perl by Olli Niemitalo.
Outputs
InfoField
The script below generates these SVG images:

This Octave script is not MATLAB-compatible. Things you may need to install to run the script:

  • Octave
  • gnuplot
  • epstool
  • pstoedit
  • transfig

For viewing the svg files using "display", you may want to install:

  • librsvg2-bin
Gnu Octave and Perl Scripts
InfoField

Octave code

graphics_toolkit gnuplot
pkg load signal

% Characteristics common to both plots
  set(0, "DefaultAxesFontName", "Microsoft Sans Serif")
  set(0, "DefaultTextFontName", "Microsoft Sans Serif") 
  set(0, "DefaultAxesTitleFontWeight", "bold")
  set(0, "DefaultAxesFontWeight",      "bold")
  set(0, "DefaultAxesFontSize", 20)
  set(0, "DefaultAxesLineWidth", 3)
  set(0, "DefaultAxesBox", "on")
  set(0, "DefaultAxesGridLineStyle", "-")
  set(0, "DefaultAxesGridColor", [0 0 0])  % black
  set(0, "DefaultAxesGridAlpha", 0.25)     % opaqueness of grid
  set(0, "DefaultAxesLayer", "bottom")     % grid not visible where overlapped by graph
%========================================================================
function plotWindow (w, wname, wfilename = "", wspecifier = "", wfilespecifier = "")
 
  close     % If there is a previous screen image, remove it.
  M = 32;   % Fourier transform size as multiple of window length
  Q = 512;  % Number of samples in time domain plot
  P = 40;   % Maximum bin index drawn
  dr = 130; % (dynamic range) Maximum attenuation (dB) drawn in frequency domain plot
 
  L = length(w);
  B = L*sum(w.^2)/sum(w)^2;              % noise bandwidth (bins)
  
  n = [0 : 1/Q : 1];
  w2 = interp1 ([0 : 1/(L-1) : 1], w, n);
 
  if (M/L < Q)
    Q = M/L;
  endif
 
  figure("position", [1 1 1200 600])  % width = 2×height, because there are 2 plots
% Plot the window function
  subplot(1,2,1)
  area(n,w2,"FaceColor", [0 0.4 0.6], "edgecolor", [0 0 0], "linewidth", 1)
  
  g_x = [0 : 1/8 : 1];    % user defined grid X [start:spaces:end]
  g_y = [0 : 0.1 : 1];
  set(gca,"XTick", g_x)
  set(gca,"YTick", g_y)

% Special y-scale if filename includes "flat top"
  if(index(wname, "flat top"))
    ylimits = [-0.1 1.05];
  else
    ylimits = [0 1.05];
  endif
  ylim(ylimits)
  ylabel("amplitude","FontSize",28)  
  set(gca,"XTickLabel",[" 0"; " "; " "; " "; " "; " "; " "; " "; "  N"])
  grid("on")
  xlabel("samples","FontSize",28)
#{
% This is a disabled work-around for an Octave bug, if you don't want to run the perl post-processor.
  text(-.18, .4,"amplitude","rotation",90, "Fontsize", 28);
  text(1.15, .4,"decibels", "rotation",90, "Fontsize", 28);
#}

%Construct a title from input arguments.
%The default interpreter is "tex", which can render subscripts and the following Greek character codes:
%  \alpha \beta \gamma \delta \epsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu \nu \xi \o
%  \pi \varpi \rho \sigma \varsigma \tau \upsilon \phi \chi \psi \omega.
%
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname," window"), "FontSize", 28)    
  elseif (length(strfind (wspecifier, "&#")) == 0 )
    title(cstrcat(wname,' window (', wspecifier, ')'), "FontSize", 28)
  else
% The specifiers '\sigma_t' and '\mu' work correctly in the output file, but not in subsequent thumbnails.
% So UNICODE substitutes are used.  The tex interpreter would remove the & character, needed by the Perl script.
    title(cstrcat(wname,' window (', wspecifier, ')'), "interpreter", "none", "FontSize", 28)
  endif
  ax1 = gca;
 
% Compute spectal leakage distribution
  H = abs(fft([w zeros(1,(M-1)*L)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
  n = ([1:M*L]-1-M*L/2)/M;
  k2 = [-P : 1/M : P];
  H2 = interp1 (n, H, k2);
 
% Plot the leakage distribution
  subplot(1,2,2)
  h = stem(k2,H2,"-");
  set(h,"BaseValue",-dr)
  xlim([-P P])
  ylim([-dr 6])
  set(gca,"YTick", [0 : -10 : -dr])
  set(findobj("Type","line"), "Marker", "none", "Color", [0.8710 0.49 0])
  grid("on")
  set(findobj("Type","gridline"), "Color", [.871 .49 0])
  ylabel("decibels","FontSize",28)
  xlabel("bins","FontSize",28)
  title("Fourier transform","FontSize",28)
  text(-5, -126, ['B = ' num2str(B,'%5.3f')],"FontWeight","bold","FontSize",14)
  ax2 = gca;

% Configure the plots so that they look right after the Perl post-processor.
% These are empirical values (trial & error).
% Note: Would move labels and title closer to axes, if I could figure out how to do it.
  x1 = .08;         %   left margin for y-axis labels
  x2 = .02;         %  right margin
  y1 = .14;         % bottom margin for x-axis labels
  y2 = .14;         %    top margin for title
  ws = .13;         % whitespace between plots
  width  = (1-x1-x2-ws)/2;
  height = 1-y1-y2;
  set(ax1,"Position", [x1         y1 width height])      % [left bottom width height]
  set(ax2,"Position", [1-width-x2 y1 width height])
  
%Construct a filename from input arguments.
  if (strcmp (wfilename, ""))
    wfilename = wname;
  endif
  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif
  if (strcmp (wfilespecifier, ""))
    savetoname = cstrcat("Window function and frequency response - ", wfilename, ".svg");
  else
    savetoname = cstrcat("Window function and frequency response - ", wfilename, " (", wfilespecifier, ").svg");
  endif
  print(savetoname, "-dsvg", "-S1200,600")
% close    % Relocated to the top of the function
endfunction

%========================================================================
global N L 
% Generate odd-length, symmetric windows
N = 2^16;          % Large value ensures most accurate value of B
n = 0:N;
L = length(n);     % Window length

%========================================================================
w = ones(1,L);
plotWindow(w, "Rectangular")

%========================================================================
w = 1 - abs(n-N/2)/(L/2);
plotWindow(w, "Triangular")

% Indistinguishable from Triangular for large N
% w = 1 - abs(n-N/2)/(N/2);
% plotWindow(w, "Bartlett")
 
%========================================================================
w = parzenwin(L).';
plotWindow(w, "Parzen");

%========================================================================
w = 1-((n-N/2)/(N/2)).^2;
plotWindow(w, "Welch");

%========================================================================
w = sin(pi*n/N);
plotWindow(w, "Sine")
 
%========================================================================
w = 0.5 - 0.5*cos(2*pi*n/N);
plotWindow(w, "Hann")
 
%========================================================================
w = 0.53836 - 0.46164*cos(2*pi*n/N);
plotWindow(w, "Hamming", "Hamming", 'a_0 = 0.53836', "alpha = 0.53836")
 
%========================================================================
w = 0.42 - 0.5*cos(2*pi*n/N) + 0.08*cos(4*pi*n/N);
plotWindow(w, "Blackman")
 
%========================================================================
w = 0.355768 - 0.487396*cos(2*pi*n/N) + 0.144232*cos(4*pi*n/N) -0.012604*cos(6*pi*n/N);
plotWindow(w, "Nuttall", "Nuttall", "continuous first derivative")

%========================================================================
w = 0.3635819 - 0.4891775*cos(2*pi*n/N) + 0.1365995*cos(4*pi*n/N) -0.0106411*cos(6*pi*n/N);
plotWindow(w, "Blackman-Nuttall", "Blackman-Nuttall")
 
%========================================================================
w = 0.35875 - 0.48829*cos(2*pi*n/N) + 0.14128*cos(4*pi*n/N) -0.01168*cos(6*pi*n/N);
plotWindow(w, "Blackman-Harris", "Blackman-Harris")
 
%========================================================================
% Matlab coefficients
a = [0.21557895 0.41663158 0.277263158 0.083578947 0.006947368];
% Stanford Research Systems (SRS) coefficients
% a = [1  1.93  1.29  0.388  0.028];
% a = a / sum(a);
w = a(1) - a(2)*cos(2*pi*n/N) + a(3)*cos(4*pi*n/N) -a(4)*cos(6*pi*n/N) +a(5)*cos(8*pi*n/N);
plotWindow(w, "flat top")
 
%========================================================================
% The version using \sigma no longer renders correct thumbnail previews.
% Ollie's older version using &#963; seems to solve that problem.
sigma = 0.4;
w = exp(-0.5*( (n-N/2)/(sigma*N/2) ).^2);
% plotWindow(w, "Gaussian", "Gaussian", '\sigma = 0.4', "sigma = 0.4")
  plotWindow(w, "Gaussian", "Gaussian", "&#963; = 0.4", "sigma = 0.4")
 
%========================================================================
% Confined Gaussian
global T P abar target_stnorm
N = 512;                % Reduce N to avoid excessive computation time
n = 0:N;
L = length(n);          % Window length

target_stnorm = 0.1;
function [g,sigma_w,sigma_t] = CGWn(alpha, M)
  % determine eigenvectors of M(alpha)
  global L P T
  opts.maxit = 10000;
  if(M ~= L)
    [g,lambda] = eigs(P + alpha*T, M, 'sa', opts);
  else
    [g,lambda] = eig(P + alpha*T);
  end
  sigma_t = sqrt(diag((g'*T*g) / (g'*g)));
  sigma_w = sqrt(diag((g'*P*g) / (g'*g)));
end
function [h1] = helperCGW(anorm)
  global L abar target_stnorm
  [~,~,sigma_t] = CGWn(anorm*abar,1);
  h1 = sigma_t - target_stnorm * L;
end
% define alphabar, and matrices T and P
T = zeros(L,L);
P = zeros(L,L);
for m=1:L
  T(m,m) = (m - (L+1)/2)^2;
  for l=1:L
    if m ~= l
      P(m,l) = 2*(-1)^(m-l)/(m-l)^2;
    else
      P(m,l) = pi^2/3;
    end
  end
end
abar = (10/L)^4/4;
[anorm, aval] = fzero(@helperCGW, 0.1/target_stnorm);
[CGWg, CGWsigma_w, CGWsigma_t] = CGWn(anorm*abar,1);
sigma_t = CGWsigma_t/L          % Confirm sigma_t
w = CGWg * sign(mean(CGWg));
w = w'/max(w);
% \sigma_t works correctly in actual file, but not in thumbnail versions.
% plotWindow(w, "Confined Gaussian", "Confined Gaussian", '\sigma_t = 0.1', "sigma_t = 0.1");
  plotWindow(w, "Confined Gaussian", "Confined Gaussian", "&#963;&#8348; = 0.1", "sigma_t = 0.1");

  N = 2^16;          % restore original N
  n = 0:N;
  L = length(n);     % Window length

%========================================================================
global denominator;
sigma = 0.1;
denominator = (2*L*sigma).^2;
function [gaussout] = gauss(x)
  global N denominator
  gaussout = exp(- (x-N/2).^2 ./ denominator);
end
w = gauss(n) - gauss(-1/2).*(gauss(n+L) + gauss(n-L))./(gauss(-1/2 + L) + gauss(-1/2 - L));
% \sigma_t works correctly in actual file, but not in thumbnail versions
% plotWindow(w, "App. conf. Gaussian", "Approximate confined Gaussian", '\sigma_t = 0.1', "sigma_t = 0.1");
  plotWindow(w, "App. conf. Gaussian", "Approximate confined Gaussian", "&#963;&#8348; = 0.1", "sigma_t = 0.1");

%========================================================================
alpha = 0.5;
a = alpha*N/2;
w = ones(1,L);
m = 0 : a;
if( max(m) == a )
  m = m(1:end-1);
endif
M = length(m);
w(1:M) = 0.5*(1-cos(pi*m/a));
w(L:-1:L-M+1) = w(1:M);
% plotWindow(w, "Tukey", "Tukey", '\alpha = 0.5', "alpha = 0.5")
  plotWindow(w, "Tukey", "Tukey", "&#945; = 0.5", "alpha = 0.5")

%========================================================================
epsilon = 0.1;
a = N*epsilon;

w = ones(1,L);
m = 0 : a;
if( max(m) == a )
  m = m(1:end-1);
endif
% Divide by 0 is handled by Octave.  Results in w(1) = 0.
  z_exp = a./m - a./(a-m);
  M = length(m);
  w(1:M) = 1 ./ (exp(z_exp) + 1);
  w(L:-1:L-M+1) = w(1:M);

#{
% The original method is harder to understand:
t_cut = N/2 - a;
T_in = abs(n - N/2);
z_exp = (t_cut - N/2) ./ (T_in - t_cut)...
      + (t_cut - N/2) ./ (T_in - N/2);
% The numerator forces sigma = 0 at n = 0:
  sigma =  (T_in < N/2) ./ (exp(z_exp) + 1);        
% Either the 1st term or the 2nd term is 0, depending on n:
  w = 1 * (T_in <= t_cut)  +  sigma .* (T_in > t_cut);
#}

% plotWindow(w, "Planck-taper", "Planck-taper", '\epsilon = 0.1', "epsilon = 0.1")
  plotWindow(w, "Planck-taper", "Planck-taper", "&#949; = 0.1", "epsilon = 0.1")

%========================================================================
N = 2^12;               % Reduce N to avoid excess memory requirement
n = 0:N;
L = length(n);          % Window length

alpha = 2;
s = sin(alpha*2*pi/L*[1:N])./[1:N];
c0 = [alpha*2*pi/L,s];
A = toeplitz(c0);
[V,evals] = eigs(A, 1);
[emax,imax] = max(abs(diag(evals)));
w = abs(V(:,imax));
w = w.';
w = w / max(w);
% plotWindow(w, "DPSS", "DPSS", '\alpha = 2', "alpha = 2")
  plotWindow(w, "DPSS", "DPSS", "&#945; = 2", "alpha = 2")

%========================================================================
alpha = 3;
s = sin(alpha*2*pi/L*[1:N])./[1:N];
c0 = [alpha*2*pi/L,s];
A = toeplitz(c0);
[V,evals] = eigs(A, 1);
[emax,imax] = max(abs(diag(evals)));
w = abs(V(:,imax));
w = w.';
w = w / max(w);
% plotWindow(w, "DPSS", "DPSS", '\alpha = 3', "alpha = 3")
  plotWindow(w, "DPSS", "DPSS", "&#945; = 3", "alpha = 3")

N = 2^16;          % Restore original N
n = 0:N;
L = length(n);     % Window length
%========================================================================
alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*n/N -1).^2))/besseli(0,pi*alpha);
% plotWindow(w, "Kaiser", "Kaiser", '\alpha = 2', "alpha = 2")
  plotWindow(w, "Kaiser", "Kaiser", "&#945; = 2", "alpha = 2")
 
%========================================================================
alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*n/N -1).^2))/besseli(0,pi*alpha);
% plotWindow(w, "Kaiser", "Kaiser", '\alpha = 3', "alpha = 3")
  plotWindow(w, "Kaiser", "Kaiser", "&#945; = 3", "alpha = 3")
 
%========================================================================
alpha = 5; % Attenuation in 20 dB units
w = chebwin(L, alpha * 20).';
% plotWindow(w, "Dolph-Chebyshev", "Dolph-Chebyshev", '\alpha = 5', "alpha = 5")
  plotWindow(w, "Dolph&#8211;Chebyshev", "Dolph-Chebyshev", "&#945; = 5", "alpha = 5")
 
%========================================================================
w = ultrwin(L, -.5, 100, 'a')';
% \mu works correctly in actual file, but not in thumbnail versions
% plotWindow(w, "Ultraspherical", "Ultraspherical", '\mu = -0.5', "mu = -0.5")
  plotWindow(w, "Ultraspherical", "Ultraspherical", "&#956; = -0.5", "mu = -0.5")

%========================================================================
tau = (L/2);
w = exp(-abs(n-N/2)/tau);
% plotWindow(w, "Exponential", "Exponential", '\tau = N/2', "half window decay")
  plotWindow(w, "Exponential", "Exponential", "&#964; = N/2", "half window decay")
 
%========================================================================
tau = (L/2)/(60/8.69);
w = exp(-abs(n-N/2)/tau);
% plotWindow(w, "Exponential", "Exponential", '\tau = (N/2)/(60/8.69)', "60dB decay")
  plotWindow(w, "Exponential", "Exponential", "&#964; = (N/2)/(60/8.69)", "60dB decay")

%========================================================================
w = 0.62 -0.48*abs(n/N -0.5) -0.38*cos(2*pi*n/N);
plotWindow(w, "Bartlett-Hann", "Bartlett-Hann")

%========================================================================
alpha = 4.45;
epsilon = 0.1;
t_cut = N * (0.5 - epsilon);
t_in = n - N/2;
T_in = abs(t_in);
z_exp = ((t_cut - N/2) ./ (T_in - t_cut) + (t_cut - N/2) ./ (T_in - N/2));
sigma =  (T_in < N/2) ./ (exp(z_exp) + 1);
w = (1 * (T_in <= t_cut) + sigma .* (T_in > t_cut)) .* besseli(0, pi*alpha * sqrt(1 - (2 * t_in / N).^2)) / besseli(0, pi*alpha);
% plotWindow(w, "Planck-Bessel", "Planck-Bessel", '\epsilon = 0.1, \alpha = 4.45', "epsilon = 0.1, alpha = 4.45")
  plotWindow(w, "Planck&#8211;Bessel", "Planck-Bessel", "&#949; = 0.1, &#945; = 4.45", "epsilon = 0.1, alpha = 4.45")

%========================================================================
alpha = 2;
w = 0.5*(1 - cos(2*pi*n/N)).*exp( -alpha*abs(N-2*n)/N );
% plotWindow(w, "Hann-Poisson", "Hann-Poisson", '\alpha = 2', "alpha = 2")
  plotWindow(w, "Hann&#8211;Poisson", "Hann-Poisson", "&#945; = 2", "alpha = 2")
 
%========================================================================
w = sinc(2*n/N - 1);
plotWindow(w, "Lanczos")

%========================================================================
% optimized Nutall
ak = [-1.9501232504232442 1.7516390954528638 -0.9651321809782892 0.3629219021312954 -0.0943163918335154 ...
0.0140434805881681 0.0006383045745587 -0.0009075461792061 0.0002000671118688 -0.0000161042445001];

n = -N/2:N/2;
n = n/std(n);
w = 1;
for k = 1 : length(ak)
% This is an array addition, which expands the dimension of w[] as needed, and the value "1" is replicated.
   w = w + ak(k)*(n.^(2*k));
endfor
w = w/max(w);
plotWindow(w, "GAP optimized Nuttall")

The generated SVG files should be post-processed by a perl script (thanks to {{U|Olli Niemitalo}}), which scans the current directory for .svg files and makes the necessary changes if they have not already been made. The script (below) does the following:
  • change the SVG metadata title from "Gnuplot" to the body of the file name, and
  • replace UNICODE characters with actual Greek letters, and
  • replace Greek characters created by the Octave script with better-looking versions, and
  • move the title and axis labels farther away from the graph to prevent overlap.

Perl code

#!/usr/bin/perl

opendir (DIR, '.') or die $!;  ## open the current directory , if error exit
while ($file = readdir(DIR)) {  ## read all the file names in the current directory
  $ext = substr($file, length($file)-4);  ## get the last 4 letters of the file name
  if ($ext eq '.svg') {    ## if the file extension is '.svg'
    print("$file\n");    ## print file name
    ($pre, $name) = split(" - ", substr($file, 0, length($file)-4));  ## split the filename in 2
    @lines = ();  ## dummy up an array
    open (INPUTFILE, "<", $file) or die $!;  ## open up the file for reading
    while ($line = <INPUTFILE>) {  ## loop through all the lines in the file
      $line =~ s/&amp;/&/g;   ## replace "&amp;" with "&" , get rid of semicolon
      if ($line eq "<title>Gnuplot</title>\n") {  ## if line is EXACTLY equal to "<.....>\n" then
        $line = '<title>Window function and its Fourier transform &#8211; '.$name."</title>"."\n"; ## set the line to a new value, &#8211 - is unicode for a dash
                                                                                                   ## the .$name. concatenates the strings together
      }  ## end if
      @lines[0+@lines] = $line;  ## append to the output array the value of the modified line
    }  ## end loop
    close(INPUTFILE);   ## close the input file
    open (OUTPUTFILE, ">", $file) or die $!;   ## open the output file
    for ($t = 0; $t < @lines; $t++) {  ## loop through the output array, printing out each line
      print(OUTPUTFILE $lines[$t]);
    }  ## end loop
    close(OUTPUTFILE);   ## close the output file
  }  ## end if
}  ## end loop
closedir (DIR);  ## close the directory

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

13 February 2013

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current09:48, 20 November 2019512 × 256 (157 KB)Bob KDisplay parameter B on frequency distribution

The following page uses this file:

Metadata