Inverse function
An inverse function is a concept of mathematics. A function will calculate some output [math]\displaystyle{ y }[/math], given some input [math]\displaystyle{ x }[/math]. This is usually written [math]\displaystyle{ f(x) = y }[/math]. The inverse function does the reverse. Let's say [math]\displaystyle{ g }[/math] is the inverse function of [math]\displaystyle{ f }[/math], then [math]\displaystyle{ g(y) = x }[/math]. Or otherwise put, [math]\displaystyle{ g(f(x)) = x }[/math]. An inverse function to [math]\displaystyle{ f }[/math] is usually called [math]\displaystyle{ f^{-1} }[/math].[1] It is not to be confused with [math]\displaystyle{ 1/f }[/math], which is a reciprocal function.[2]
Examples
If [math]\displaystyle{ f(x) = x^3 }[/math] over real [math]\displaystyle{ x }[/math], then [math]\displaystyle{ f^{-1}(x) = \sqrt[3]{x}. }[/math]
To find the inverse function, swap the roles of [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] and solve for [math]\displaystyle{ y }[/math]. For example, [math]\displaystyle{ y=e^x }[/math] would turn to [math]\displaystyle{ x=e^y }[/math], and then [math]\displaystyle{ \ln x =y }[/math]. This shows that the inverse function of [math]\displaystyle{ y=e^x }[/math] is [math]\displaystyle{ y=\ln x }[/math].
Not all functions have inverse functions: for example, function [math]\displaystyle{ f(x) = |x| }[/math] has none (because [math]\displaystyle{ |-1| = 1 = |1| }[/math], and [math]\displaystyle{ f^{-1}(x) }[/math] cannot be both 1 and -1), but every binary relation has its own inverse relation.
In some cases, finding the inverse of a function can be very difficult to do.
Inverse Function Media
The inverse of this cubic function has three branches.
Related pages
References
- ↑ "Comprehensive List of Algebra Symbols". Math Vault. 2020-03-25. Retrieved 2020-09-08.
- ↑ Weisstein, Eric W. "Inverse Function". mathworld.wolfram.com. Retrieved 2020-09-08.