Subset
In set theory, a set [math]\displaystyle{ A }[/math] is called a subset of a set [math]\displaystyle{ B }[/math] if all of the elements of [math]\displaystyle{ A }[/math] are contained in [math]\displaystyle{ B }[/math]. For example, any set is a subset of itself. Another example of a subset is a proper subset: a set [math]\displaystyle{ A }[/math] is called a proper subset of a set [math]\displaystyle{ B }[/math] if [math]\displaystyle{ A }[/math] is subset of [math]\displaystyle{ B }[/math] but is not equal to [math]\displaystyle{ B }[/math].
The symbol "[math]\displaystyle{ \subseteq }[/math]" always means "is a subset of."[1][2][3] The symbol "[math]\displaystyle{ \subsetneq }[/math]" always means "is a proper subset of." There is also the symbol "[math]\displaystyle{ \subset }[/math]", which some authors use to mean "is a subset of"[4] and other authors only use to mean "is a proper subset of."[1]
For example:
- [math]\displaystyle{ \{3,7\} }[/math] is a subset of [math]\displaystyle{ \{3,7\} }[/math], so we could write [math]\displaystyle{ \{3,7\} \subseteq \{3,7\} }[/math].
- [math]\displaystyle{ \{3,7\} }[/math] is a proper subset of [math]\displaystyle{ \{1,3,4,7\} }[/math], so we could write [math]\displaystyle{ \{3,7\} \subseteq \{1,3,4,7\} }[/math],[math]\displaystyle{ \{3,7\} \subsetneq \{1,3,4,7\} }[/math], or [math]\displaystyle{ \{3,7\} \subset \{1,3,4,7\} }[/math].
- The interval [0, 1] is a proper subset of the set of real numbers [math]\displaystyle{ \mathbb{R} }[/math], so [math]\displaystyle{ [0, 1] \subset \mathbb{R} }[/math].
Subset Media
The regular polygons form a subset of the polygons.
Related pages
References
- ↑ 1.0 1.1 "Comprehensive List of Set Theory Symbols". Math Vault. 2020-04-11. Retrieved 2020-08-23.
- ↑ Weisstein, Eric W. "Subset". mathworld.wolfram.com. Retrieved 2020-08-23.
- ↑ "Introduction to Sets". www.mathsisfun.com. Retrieved 2020-08-23.
- ↑ Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, p. 6, ISBN 978-0-07-054234-1, MR 0924157