Wheel theory

Wheel theory is the theory of wheels. A wheel is an algebraic structure where division by 0 has meaning. The term wheel was inspired by the topological picture [math]\displaystyle{ \odot }[/math].[1]

Definition

A wheel is an algebraic structure satisfying(for all values [math]\displaystyle{ x }[/math], [math]\displaystyle{ y }[/math], and [math]\displaystyle{ z }[/math]):

  • Addition and multiplication are commutative and associative, with [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ 1 }[/math] as their respective identities.
  • [math]\displaystyle{ //x = x }[/math]
  • [math]\displaystyle{ /(xy) = /y/x }[/math]
  • [math]\displaystyle{ xz + yz = (x + y)z + 0z }[/math]
  • [math]\displaystyle{ (x + yz)/y = x/y + z + 0y }[/math]
  • [math]\displaystyle{ 0\cdot 0 = 0 }[/math]
  • [math]\displaystyle{ (x+0y)z = xz + 0y }[/math]
  • [math]\displaystyle{ /(x+0y) = /x + 0y }[/math]
  • [math]\displaystyle{ 0/0 + x = 0/0 }[/math]

Wheels replace the usual division with a unary operator applied to one argument [math]\displaystyle{ /x }[/math] similar (but not identical) to the multiplicative inverse [math]\displaystyle{ x^{-1} }[/math], such that [math]\displaystyle{ a/b }[/math] becomes shorthand for [math]\displaystyle{ a \cdot /b = /b \cdot a }[/math]. Also, [math]\displaystyle{ \bot }[/math] replaces the fraction [math]\displaystyle{ 0/0 }[/math].

Wheel Theory Media

Sources

References