Highly composite number
A highly composite number in math (also called anti-prime) is a real number with more divisors than any smaller real number smaller than it.
Jean-Pierre Kahane thought that Plato might have known about highly composite numbers. This is because he chose 5040 as a good number of citizens in a city as 5040 has more divisor than any numbers less than it.[1][2]
Examples
The first 38 highly composite numbers are listed in the table below (sequence A002182 in OEIS). The number of divisors is given in the column labeled d(n). The letters with asterisks are also superior highly composite numbers.
Order | HCN n |
prime factorization |
prime exponents |
number of prime factors |
d(n) | primorial factorization |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | |||
2 | 2* | [math]\displaystyle{ 2 }[/math] | 1 | 1 | 2 | [math]\displaystyle{ 2 }[/math] |
3 | 4 | [math]\displaystyle{ 2^2 }[/math] | 2 | 2 | 3 | [math]\displaystyle{ 2^2 }[/math] |
4 | 6* | [math]\displaystyle{ 2\cdot 3 }[/math] | 1,1 | 2 | 4 | [math]\displaystyle{ 6 }[/math] |
5 | 12* | [math]\displaystyle{ 2^2\cdot 3 }[/math] | 2,1 | 3 | 6 | [math]\displaystyle{ 2\cdot 6 }[/math] |
6 | 24 | [math]\displaystyle{ 2^3\cdot 3 }[/math] | 3,1 | 4 | 8 | [math]\displaystyle{ 2^2\cdot 6 }[/math] |
7 | 36 | [math]\displaystyle{ 2^2\cdot 3^2 }[/math] | 2,2 | 4 | 9 | [math]\displaystyle{ 6^2 }[/math] |
8 | 48 | [math]\displaystyle{ 2^4\cdot 3 }[/math] | 4,1 | 5 | 10 | [math]\displaystyle{ 2^3\cdot 6 }[/math] |
9 | 60* | [math]\displaystyle{ 2^2\cdot 3\cdot 5 }[/math] | 2,1,1 | 4 | 12 | [math]\displaystyle{ 2\cdot 30 }[/math] |
10 | 120* | [math]\displaystyle{ 2^3\cdot 3\cdot 5 }[/math] | 3,1,1 | 5 | 16 | [math]\displaystyle{ 2^2\cdot 30 }[/math] |
11 | 180 | [math]\displaystyle{ 2^2\cdot 3^2\cdot 5 }[/math] | 2,2,1 | 5 | 18 | [math]\displaystyle{ 6\cdot 30 }[/math] |
12 | 240 | [math]\displaystyle{ 2^4\cdot 3\cdot 5 }[/math] | 4,1,1 | 6 | 20 | [math]\displaystyle{ 2^3\cdot 30 }[/math] |
13 | 360* | [math]\displaystyle{ 2^3\cdot 3^2\cdot 5 }[/math] | 3,2,1 | 6 | 24 | [math]\displaystyle{ 2\cdot 6\cdot 30 }[/math] |
14 | 720 | [math]\displaystyle{ 2^4\cdot 3^2\cdot 5 }[/math] | 4,2,1 | 7 | 30 | [math]\displaystyle{ 2^2\cdot 6\cdot 30 }[/math] |
15 | 840 | [math]\displaystyle{ 2^3\cdot 3\cdot 5\cdot 7 }[/math] | 3,1,1,1 | 6 | 32 | [math]\displaystyle{ 2^2\cdot 210 }[/math] |
16 | 1260 | [math]\displaystyle{ 2^2\cdot 3^2\cdot 5\cdot 7 }[/math] | 2,2,1,1 | 6 | 36 | [math]\displaystyle{ 6\cdot 210 }[/math] |
17 | 1680 | [math]\displaystyle{ 2^4\cdot 3\cdot 5\cdot 7 }[/math] | 4,1,1,1 | 7 | 40 | [math]\displaystyle{ 2^3\cdot 210 }[/math] |
18 | 2520* | [math]\displaystyle{ 2^3\cdot 3^2\cdot 5\cdot 7 }[/math] | 3,2,1,1 | 7 | 48 | [math]\displaystyle{ 2\cdot 6\cdot 210 }[/math] |
19 | 5040* | [math]\displaystyle{ 2^4\cdot 3^2\cdot 5\cdot 7 }[/math] | 4,2,1,1 | 8 | 60 | [math]\displaystyle{ 2^2\cdot 6\cdot 210 }[/math] |
20 | 7560 | [math]\displaystyle{ 2^3\cdot 3^3\cdot 5\cdot 7 }[/math] | 3,3,1,1 | 8 | 64 | [math]\displaystyle{ 6^2\cdot 210 }[/math] |
21 | 10080 | [math]\displaystyle{ 2^5\cdot 3^2\cdot 5\cdot 7 }[/math] | 5,2,1,1 | 9 | 72 | [math]\displaystyle{ 2^3\cdot 6\cdot 210 }[/math] |
22 | 15120 | [math]\displaystyle{ 2^4\cdot 3^3\cdot 5\cdot 7 }[/math] | 4,3,1,1 | 9 | 80 | [math]\displaystyle{ 2\cdot 6^2\cdot 210 }[/math] |
23 | 20160 | [math]\displaystyle{ 2^6\cdot 3^2\cdot 5\cdot 7 }[/math] | 6,2,1,1 | 10 | 84 | [math]\displaystyle{ 2^4\cdot 6\cdot 210 }[/math] |
24 | 25200 | [math]\displaystyle{ 2^4\cdot 3^2\cdot 5^2\cdot 7 }[/math] | 4,2,2,1 | 9 | 90 | [math]\displaystyle{ 2^2\cdot 30\cdot 210 }[/math] |
25 | 27720 | [math]\displaystyle{ 2^3\cdot 3^2\cdot 5\cdot 7\cdot 11 }[/math] | 3,2,1,1,1 | 8 | 96 | [math]\displaystyle{ 2\cdot 6\cdot 2310 }[/math] |
26 | 45360 | [math]\displaystyle{ 2^4\cdot 3^4\cdot 5\cdot 7 }[/math] | 4,4,1,1 | 10 | 100 | [math]\displaystyle{ 6^3\cdot 210 }[/math] |
27 | 50400 | [math]\displaystyle{ 2^5\cdot 3^2\cdot 5^2\cdot 7 }[/math] | 5,2,2,1 | 10 | 108 | [math]\displaystyle{ 2^3\cdot 30\cdot 210 }[/math] |
28 | 55440* | [math]\displaystyle{ 2^4\cdot 3^2\cdot 5\cdot 7\cdot 11 }[/math] | 4,2,1,1,1 | 9 | 120 | [math]\displaystyle{ 2^2\cdot 6\cdot 2310 }[/math] |
29 | 83160 | [math]\displaystyle{ 2^3\cdot 3^3\cdot 5\cdot 7\cdot 11 }[/math] | 3,3,1,1,1 | 9 | 128 | [math]\displaystyle{ 6^2\cdot 2310 }[/math] |
30 | 110880 | [math]\displaystyle{ 2^5\cdot 3^2\cdot 5\cdot 7\cdot 11 }[/math] | 5,2,1,1,1 | 10 | 144 | [math]\displaystyle{ 2^3\cdot 6\cdot 2310 }[/math] |
31 | 166320 | [math]\displaystyle{ 2^4\cdot 3^3\cdot 5\cdot 7\cdot 11 }[/math] | 4,3,1,1,1 | 10 | 160 | [math]\displaystyle{ 2\cdot 6^2\cdot 2310 }[/math] |
32 | 221760 | [math]\displaystyle{ 2^6\cdot 3^2\cdot 5\cdot 7\cdot 11 }[/math] | 6,2,1,1,1 | 11 | 168 | [math]\displaystyle{ 2^4\cdot 6\cdot 2310 }[/math] |
33 | 277200 | [math]\displaystyle{ 2^4\cdot 3^2\cdot 5^2\cdot 7\cdot 11 }[/math] | 4,2,2,1,1 | 10 | 180 | [math]\displaystyle{ 2^2\cdot 30\cdot 2310 }[/math] |
34 | 332640 | [math]\displaystyle{ 2^5\cdot 3^3\cdot 5\cdot 7\cdot 11 }[/math] | 5,3,1,1,1 | 11 | 192 | [math]\displaystyle{ 2^2\cdot 6^2\cdot 2310 }[/math] |
35 | 498960 | [math]\displaystyle{ 2^4\cdot 3^4\cdot 5\cdot 7\cdot 11 }[/math] | 4,4,1,1,1 | 11 | 200 | [math]\displaystyle{ 6^3\cdot 2310 }[/math] |
36 | 554400 | [math]\displaystyle{ 2^5\cdot 3^2\cdot 5^2\cdot 7\cdot 11 }[/math] | 5,2,2,1,1 | 11 | 216 | [math]\displaystyle{ 2^3\cdot 30\cdot 2310 }[/math] |
37 | 665280 | [math]\displaystyle{ 2^6\cdot 3^3\cdot 5\cdot 7\cdot 11 }[/math] | 6,3,1,1,1 | 12 | 224 | [math]\displaystyle{ 2^3\cdot 6^2\cdot 2310 }[/math] |
38 | 720720* | [math]\displaystyle{ 2^4\cdot 3^2\cdot 5\cdot 7\cdot 11\cdot 13 }[/math] | 4,2,1,1,1,1 | 10 | 240 | [math]\displaystyle{ 2^2\cdot 6\cdot 30030 }[/math] |
The divisor of the first 15 highly composite numbers are shown below.
n | d(n) | Divisors of n |
---|---|---|
1 | 1 | 1 |
2 | 2 | 1, 2 |
4 | 3 | 1, 2, 4 |
6 | 4 | 1, 2, 3, 6 |
12 | 6 | 1, 2, 3, 4, 6, 12 |
24 | 8 | 1, 2, 3, 4, 6, 8, 12, 24 |
36 | 9 | 1, 2, 3, 4, 6, 9, 12, 18, 36 |
48 | 10 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 |
60 | 12 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 |
120 | 16 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 |
180 | 18 | 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180 |
240 | 20 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240 |
360 | 24 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360 |
720 | 30 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720 |
840 | 32 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840 |
The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways.
The highly composite number: 10080 10080 = (2 × 2 × 2 × 2 × 2) × (3 × 3) × 5 × 7 | |||||
1 × 10080 |
2 × 5040 |
3 × 3360 |
4 × 2520 |
5 × 2016 |
6 × 1680 |
7 × 1440 |
8 × 1260 |
9 × 1120 |
10 × 1008 |
12 × 840 |
14 × 720 |
15 × 672 |
16 × 630 |
18 × 560 |
20 × 504 |
21 × 480 |
24 × 420 |
28 × 360 |
30 × 336 |
32 × 315 |
35 × 288 |
36 × 280 |
40 × 252 |
42 × 240 |
45 × 224 |
48 × 210 |
56 × 180 |
60 × 168 |
63 × 160 |
70 × 144 |
72 × 140 |
80 × 126 |
84 × 120 |
90 × 112 |
96 × 105 |
Note: The numbers in bold are also highly composite numbers. 10080 is often referred to as a 7-smooth number (sequence A002473 in OEIS). |
Similar sequences
Every highly composite number that is bigger than 6 is also an abundant number. Not all highly composite numbers are also Harshad numbers, however most of them are the same. The first highly composite number that is not a Harshad number is 245,044,800. This number's digit's sum is 27. 27, however, doesn't divide into 245,044,800 evenly.
10 of the first 38 highly composite numbers are also superior highly composite numbers.[4][5]
Highly Composite Number Media
Demonstration, with Cuisenaire rods, of the first four: 1, 2, 4, 6
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics.
Related pages
Notes
- ↑ Kahane, Jean-Pierre (February 2015), "Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'oeuvre", Notices of the American Mathematical Society, 62 (2): 136–140. Kahane cites Plato's Laws, 771c.
- ↑ Ramanujan, S. (1915). "Highly composite numbers" (PDF). Proc. London Math. Soc. Series 2. 14: 347–409. doi:10.1112/plms/s2_14.1.347. JFM 45.1248.01.
- ↑ Flammenkamp, Achim, Highly Composite Numbers.
- ↑ Sándor et al. (2006) p. 46
- ↑ Nicolas, Jean-Louis (1979). "Répartition des nombres largement composés". Acta Arith. (in français). 34 (4): 379–390. doi:10.4064/aa-34-4-379-390. Zbl 0368.10032.
References
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. pp. 45–46. ISBN 1-4020-4215-9. Zbl 1151.11300.
- Erdös, P. (1944). "On highly composite numbers" (PDF). Journal of the London Mathematical Society. Second Series. 19 (75_Part_3): 130–133. doi:10.1112/jlms/19.75_part_3.130. MR 0013381.
- Alaoglu, L.; Erdös, P. (1944). "On highly composite and similar numbers" (PDF). Transactions of the American Mathematical Society. 56 (3): 448–469. doi:10.2307/1990319. JSTOR 1990319. MR 0011087.
- Ramanujan, Srinivasa (1997). "Highly composite numbers" (PDF). Ramanujan Journal. 1 (2): 119–153. doi:10.1023/A:1009764017495. MR 1606180. S2CID 115619659. Annotated and with a foreword by Jean-Louis Nicolas and Guy Robin.