Template:Oiiint/doc

< Template:Oiiint

This template is used to include the double closed integral, usually in a mathematical formula. It overcomes a limitation of the TeX rendering which cannot display this symbol without clumsy workarounds.

This template was ported from Wikipedia.org.

Arguments

  • preintegral the text or formula immediately before the integral
  • intsubscpt the subscript below the integral
  • integrand the text or formula immediately after the formula

All parameters are optional.

Examples

Two of Maxwell's equations, e.g. the Maxwell–Faraday equation and Ampère's circuital law (with Maxwell's addition).

<source lang="tex">:[math]\displaystyle{ \oint_C \bold{E} \cdot {\rm d} \boldsymbol{\ell} = \frac{\partial }{\partial t} }[/math] \oiiint[math]\displaystyle{ {\scriptstyle S} }[/math] [math]\displaystyle{ \bold{B} \cdot {\rm d}\bold{S} }[/math]</source>

[math]\displaystyle{ \oint_C \bold{E} \cdot {\rm d} \boldsymbol{\ell} = \frac{\partial }{\partial t} }[/math] \oiiint[math]\displaystyle{ {\scriptstyle S} }[/math] [math]\displaystyle{ \bold{B} \cdot {\rm d}\bold{S} }[/math]

<source lang="tex">:[math]\displaystyle{ \oint_C \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 }[/math] \oiiint[math]\displaystyle{ {\scriptstyle S} }[/math] [math]\displaystyle{ \left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right )\! \cdot {\rm d}\bold{S} }[/math]</source>

[math]\displaystyle{ \oint_C \bold{B} \cdot {\rm d} \boldsymbol{\ell} = \mu_0 }[/math] \oiiint[math]\displaystyle{ {\scriptstyle S} }[/math] [math]\displaystyle{ \left ( \bold{J} + \epsilon_0\frac{\partial \bold{E}}{\partial t} \right )\! \cdot {\rm d}\bold{S} }[/math]

Technical details

The \oiint command is not part of AMS-LaTeX, and thus not part of the math support that MediaWiki provides. It is available as a unicode character Error using {{unichar}}: Input "222F" is not a hexadecimal value. but font support for this character can be lacking. For this reason, the template provides an image variant of the character.

See also

  • {{Oiiint}} (to implement triple closed integrals)
  • {{Intorient}} (to implement oriented boundary integrals over a 2-surface and 3-surface)