Multibrot set
In mathematics, a Multibrot set is the set of numbers in the complex plane that are put into a function multiple times until its absolute value is greater than a specific number.[1] The Multibrot set is a modification of the Mandelbrot set, where its function is:
[math]\displaystyle{ z_{n} = z^{\ \ \ \ \ \, 2}_{n-1} + c }[/math],
the Multibrot set's function is:
[math]\displaystyle{ z_{n} = z^{\ \ \ \ \ \, d}_{n-1} + c }[/math],
where d is any number, real or complex.
The formula for the Multibrot set can also be used for a Julia set.
Multibrot Set Media
Video showing the fractal with different powers (0-2).
z Template:Mapsto z2 + c
z Template:Mapsto z3 + c
z Template:Mapsto z4 + c
z Template:Mapsto z5 + c
z Template:Mapsto z6 + c
z Template:Mapsto z96 + c
References
- ↑ "Multibrot Set, Mu-Ency at MROB". www.mrob.com. Retrieved 2024-10-25.
| The English Wikibooks has more information on: |
| Wikimedia Commons has media related to Lua error in Module:Commons_link at line 62: attempt to index field 'wikibase' (a nil value).. |