Template:Infobox tennessine

  • Temp: comparing dataset and input-parameter here to check. No effect in article. [January 2019]
  • DIFF
  • [Rn] 5f14 6d10 7s2 7p5 (predicted)[1] -- infobox
  • [Rn] 5f14 6d10 7s2 7p5 (predicted)[1] -- dataset
  • Using symb-to-elconfig dataset now. DIFFs marked here may be caused by technical issues wrt reference handling, not actual diffs. -DePiep (talk) 20:17, 3 February 2019 (UTC)
Tennessine,  117Ts
General properties
Pronunciation/ˈtɛnɪsn/[2] (TEN-ə-seen)
Appearancesemimetallic (predicted)[3]
Mass number294 (most stable isotope)
Tennessine in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
At

Ts

(Usu)
livermoriumtennessineoganesson
Atomic number (Z)117
Groupgroup 17
Periodperiod 7
Blockp-block
Element category  unknown chemical properties, but probably a post-transition metal[4][5]
Electron configuration[Rn] 5f14 6d10 7s2 7p5 (predicted)[1]
Electrons per shell
2, 8, 18, 32, 32, 18, 7 (predicted)
Physical properties
Phase at STPTs: Unknown phase (predicted)[1][6]
Melting point623–823 K ​(350–550 °C, ​662–1022 °F) (predicted)[1]
Boiling point883 K ​(610 °C, ​1130 °F) (predicted)[1]
Density (near r.t.)7.1–7.3 g/cm3 (extrapolated)[6]
Atomic properties
Oxidation states(−1), (+1), (+3), (+5) (predicted)[3][1]
Ionization energies
  • 1st: 742.9 kJ/mol (predicted)[7]
  • 2nd: 1435.4 kJ/mol (predicted)[7]
  • 3rd: 2161.9 kJ/mol (predicted)[7]
  • (more)
Atomic radiusempirical: 138 pm (predicted)[6]
Covalent radius156–157 pm (extrapolated)[6]
Other properties
Natural occurrenceTs: Synthetic
CAS Number54101-14-3
History
Namingafter Tennessee region
DiscoveryJoint Institute for Nuclear Research, Lawrence Livermore National Laboratory, Vanderbilt University and Oak Ridge National Laboratory (2009)
Main isotopes of tennessine
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
293Ts[8] syn 22 ms α 289Mc
294Ts[9] syn 51 ms α 290Mc
| references
  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  2. Ritter, Malcolm (9 June 2016). Periodic table elements named for Moscow, Japan, Tennessee. Associated Press. https://apnews.com/bd44f5cccba04d4fbaec96273e06fb45/names-chemical-elements-honor-moscow-japan-tennessee. Retrieved 19 December 2017. 
  3. 3.0 3.1 Fricke, B. (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  4. Royal Society of Chemistry (2016). "Tennessine". rsc.org. Royal Society of Chemistry. Retrieved 9 November 2016. A highly radioactive metal, of which only a few atoms have ever been made.
  5. GSI (14 December 2015). "Research Program – Highlights". superheavies.de. GSI. Retrieved 9 November 2016. If this trend were followed, element 117 would likely be a rather volatile metal. Fully relativistic calculations agree with this expectation, however, they are in need of experimental confirmation.
  6. 6.0 6.1 6.2 6.3 Bonchev, D.; Kamenska, V. (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  7. 7.0 7.1 7.2 Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong (2010). "Ionization Potentials, Electron Affinities, Resonance Excitation Energies, Oscillator Strengths, And Ionic Radii of Element Uus (Z = 117) and Astatine". J. Phys. Chem. A. 2010 (114): 13388–94. Bibcode:2010JPCA..11413388C. doi:10.1021/jp107411s.
  8. Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (2014). "48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr". Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. PMID 24836239.
  9. Oganessian, Yu. Ts.; et al. (2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. 87 (5): 054621. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.