Ununennium

Ununennium, or element 119, is a predicted chemical element. Its symbol is Uue. Ununennium and Uue are substitute names made by the IUPAC, (meaning "one-one-nine-ium" in Latin) until permanent names are made. Ununennium is the element with the smallest atomic number that has not been created yet. Qualities of Ununennium are unknown, but many are predicted. It is predicted all isotopes will be radioactive. It is thought to be an alkali metal.[8]

Ununennium,  119Uue
General properties
Pronunciation/ˌn.nˈɛniəm/ ( listen) (OON-oon-EN-ee-əm)
Alternative nameselement 119, eka-francium
Mass number315 (predicted) (most stable isotope)
Ununennium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Template:Periodic table (32 columns, micro)/119+
Fr

Uue

(Ust)
oganessonununenniumunbinilium
Atomic number (Z)119
Groupgroup 1 (alkali metals)
Periodperiod 8
Blocks-block
Element category  alkali metal (predicted)
Electron configuration[Og] 8s1 (predicted)[1]
Electrons per shell
2, 8, 18, 32, 32, 18, 8, 1 (predicted)
Physical properties
Phase at STPUue: Unknown phase (could be solid or liquid)[1]
Melting point273–303 K ​(0–30 °C, ​32–86 °F) (predicted)[1]
Boiling point903 K ​(630 °C, ​1166 °F) (predicted)[2]
Density (near r.t.)3 g/cm3 (predicted)[1]
Heat of fusion2.01–2.05 kJ/mol (extrapolated)[3]
Atomic properties
Oxidation states(+1), (+3) (predicted)[1]
ElectronegativityPauling scale: 0.86 (predicted)[4]
Ionization energies
  • 1st: 463.1 kJ/mol
  • 2nd: 1698.1 kJ/mol
  • (predicted)[5]
Atomic radiusempirical: 240 pm (predicted)[1]
Covalent radius263–281 pm (extrapolated)[3]
Other properties
Natural occurrenceUue:
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for ununennium

(extrapolated)[6]
CAS Number54846-86-5
History
NamingIUPAC systematic element name
Main isotopes of ununennium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
294Uue (predicted)[1] syn ~1–10 μs α 290Ts
295Uue (predicted)[7] syn 20 μs α 291Ts
296Uue (predicted)[7] syn 12 μs α 292Ts
| references

Many attempts have been made by American, German, and Russian teams to make ununennium but all have failed. Japanese and Russian failed to produce the element after work in both 2019 and 2020.

Predicted chemistry

Ununennium's spot on the periodic table is a sign that it may be similar to lighter elements such as lithium, sodium, potassium, rubidium, caesium, and francium; however, some of its properties may be different from what is expected. For example, ununennium might be less reactive than caesium and francium and will behave more like potassium or rubidium.

Uses

As of 2023, it has yet to be created and therefore has no use.

Ununennium Media

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  2. 2.0 2.1 Fricke, B.; Waber, J. T. (1971). "Theoretical Predictions of the Chemistry of Superheavy Elements" (PDF). Actinides Reviews. 1: 433–485. Retrieved 7 August 2013.
  3. 3.0 3.1 Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. American Chemical Society. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  4. Pershina, V.; Borschevsky, A.; Anton, J. (20 February 2012). "Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces". Chemical Physics. Elsevier. 395: 87–94. Bibcode:2012CP....395...87P. doi:10.1016/j.chemphys.2011.04.017. This article gives the Mulliken electronegativity as 2.862, which has been converted to the Pauling scale via χP = 1.35χM1/2 − 1.37.
  5. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  6. Seaborg, Glenn T. (1969). "Prospects for further considerable extension of the periodic table" (PDF). Journal of Chemical Education. 46 (10): 626–634. Bibcode:1969JChEd..46..626S. doi:10.1021/ed046p626. Retrieved 22 February 2018.
  7. 7.0 7.1 Hofmann, Sigurd (2013). Overview and Perspectives of SHE Research at GSI SHIP. p. 23–32. doi:10.1007/978-3-319-00047-3.
  8. "Transuranium element". Encyclopedia Britannica. Retrieved 19 September 2017.